Introduction to the Linux kernel:
challenges and case studies

Juan Carlos Séez Alcaide

Department of Computer Architecture and Automation
ArTeCS Group
Complutense University of Madrid

IV Semana de la Informatica 2018

Feb 8, 2018

About Me

m Juan Carlos Saez Alcaide (jcsaezal®@ucm.es)

B |nterim Associate Professor, UCM
® Department of Computer Architecture and Automation

m Teaching: Operating Systems, Linux and Android Internals, ..
m Member of the ArTeCS Research Group

® High Performance Computing

® Computer Architecture

B |nteraction between system software and architecture
[

m UCM Campus Representative of the USENIX Int'l Association
B | ogin (USENIX Magazine)

IV Semana de la Informatica 2018 = 2

https://artecs.dacya.ucm.es/

Outline

Introduction

Main Features

Kernel Control Paths and Concurrency

A Common Kernel abstractions

A case study: PMCTrack tool

ArTeCS

IV Semana de la Informatica 2018 = 3

Tt

Outline

Introduction

ArTeCS

G@ :l IV Semana de la Informatica 2018 = 4

Unix (1)
m Unics — Unix (1969)

B Created by Ken Thompson and rewrit-
ten in “C" by Dennis Ritchie (1973)

B V6 (1975): Public source code
(AT&T license)

B BSD distributions (Billy Joy)
B John Lion's book on UNIX V6

Keys to success

Inexpensive license

Source code available

Code was simple and easy to modify
B Ran on modest HW

IV Semana de la Informatica 2018 = 5

Unix (I1)
|
m Unix (Cont.)
B V7 (1979): code can be no longer used for academic purposes

Xenix (1980)

® Microsoft

= SCO
Unix System 111 (1982)
Unix System V (1983)
® HP-UX, IBM’s AlIX, Sun’s Solaris

ArTeCS

ot

IV Semana de la Informatica 2018 = 6

Unix (I11)

m Proyecto GNU (1983) - Richard Stallman

® SO GNU: Emacs, GNU compiler collection
(GCC), GNU Hurd (kernel)

m Minix v1 (1987) - Andrew Tanenbaum Richard Stallman

B Minimal Unix-like OS (Unix clone)

B Teaching purposes. Modular structure

B Compatible with Unix V7 (user level) evolved
towards the POSIX standard

® 1087 (Minix1 - i8088), 1997 (Minix2 - i386)

ArTeCS

ot

Andrew Tanembaum

IV Semana de la Informatica 2018 = 7

Conflicts in the Unix world

Unix Wars (1987-1996)
m Unix International (USL - AT&T) vs. Open Software Founda-
tion
B Unix System V Release 4 (SVR4)
m War of specifications
m War ends in 1996 — Open Group (Unix Trademark)

Lawsuit brought by USL-AT&T against BSDI (1991-1994)

m Issue: attempt to make BSD free of any UNIX code
m Agreement is reached in 1994: Novell acquires USL

@ IV Semana de la Informética 2018 = 8

And Linux comes out... (1991)

m A few months after Minix 1 was released the following mes-
sage was posted at comp.os.minix:

From: torva...@klaava.Helsinki.FI (Linus Benedict Torvalds)
Date: 25 Aug 91 20:57:08 GMT Local: Sun, Aug 25 1991 9:57 pm
Subject: What would you like to see most in minix?

Hello everybody out there using minix - I'm doing a (free) operating
system (just a hobby, won't be big and professional like gnu) for
386(486) AT clones. This has been brewing since april, and is starting
to get ready. I'd like any feedback on things people like/dislike

in minix, as my 0S resembles it somewhat (same physical layout of

the file-system (due to practical reasons) among other things).

I've currently ported bash(1.08) and gcc(1.40), and things seem to
work. This implies that I'll get something practical within a few
months, and I'd like to know what features most people would want. Any
suggestions are welcome, but I won't promise I'll implement them :)

Linus (torva...@kruuna.helsinki.fi)

PS. Yes it's free of any minix code and it has a multi-threaded fs. It
is NOT portable (uses 386 task switching, etc), and it probably never
support anything other than AT-harddisks, as that's all I have :(.

IV Semana de la Informatica 2018 =

9

https://groups.google.com/forum/#!msg/comp.os.minix/dlNtH7RRrGA/SwRavCzVE7gJ

And Linux comes out... (1991)

m Keys to success

® Unix Wars

BSD Lawsuit

Competition with Windows NT (common enemy)
GPL License

Internet
77

ArTeCS

ot

IV Semana de la Informatica 2018 = 10

And Linux comes out... (1991)

m But Linux is just a kernel...
® GNU/Linux.., IBM/RedHat/HP/...Linux..

m Distros (kernel + selection of pre-compiled tools)

® MCC Interim Linux 1992,
B Slackware (Patrick Volkerding) , Debian (lan Murdock) 1993
® S.U.S.E, Red Hat (Marc Erwing, Bob Young) 1994

m Desktop Environments

B Xfree86 — Thomas Roel 1991
B KDE - Matthias Ettrich 1996

® Gnome — Miguel de Icaza 1997
. e

IV Semana de la Informatica 2018 - 11

Linux Is Not UniX

m Open Group

B Current owner of the UNIX trademark
® SUS (Single Unix Specification) certification

® Unificacién SUS / IEEE Posix en 2001 (SUS Version 3)
m A Unix system must comply with SUS

B Mac OS X Leopard (based on BSD)
= 7/0S IBM

m GNU/Linux is just a UNIX-like OS

ArTeCS

Tt

IV Semana de la Informatica 2018 = 12

Linux kernel: evolution since 1991

Lines of code per kernel version

25M
20M
-
o 15M
5
-
o
"
2 10M
£
5M
0
IR AR RN TR AR R R PR AN "’q’ R S ot
wx”’mﬁ,w\ﬁ,wvmww%%%%%%%"’% ST
Version
Source: https://www.linuxcounter.net
ArTeCS

! j IV Semana de la Informatica 2018 - 13

Android: a Linux-based OS

APPLICATIONS

Contacts Phone Browser

APPLICATION FRAMEWORK

Activity Window Content View
Manager Manager Providers System

Resource Location Notification

Package Telephony
Manager Manager

Manager Manager Manager

LIBRARIES ANDROID RUNTIME

Surface Manager pledia SQLite Core Libraries
Framework
OpenGL | ES et WebKit N[l):g,‘:i':ev/"x‘;'T

SGL SsL Bionic (libc)

LINUX KERNEL
Flash Memory Binder (IPC)

Display "
Driver N b Driver Driver

ArTeCS
FreeType

Keypad Driver

% IV Semana de la Informatica 2018 - 14

Audio Power

Drivers Management

Linux kernel in Android

m Android relies on extensions made on top of the vanilla kernel:

® Binder

Wakelocks

klogger

Ashmem

Low Memory Killer
Paranoid Network
Alarm Timers

m Today, the “Androidized” kernel constitutes a significant fork
of Linux
B Linaro maintains an “androidized” kernel close to Linux main-

line
ArTeCS

IV Semana de la Informatica 2018 = 15

Tt

http://www.linaro.org

Outline

Main Features

ArTeCS

f: IV Semana de la Informatica 2018 = 16

Monolithic design

eatures

° Application
3 — m All kernel components share
e Application
- the same address space
libe (AP1) m Everything runs in kernel (privi-
System call interface leged) mode
=T— m Good performance
support X i
8 m No isolation between compo-
o
E Network Device nents J
g stack Drivers
£
Memory Process
Management Management - Kernel Components
Architecture specific code (arch)
ArTeCS
Go j IV Semana de la Informatica 2018 - 17

User mode vs. kernel mode

User mode

TASK_SIZE

Virtual address
space

State register

:

3
!

User
flags

Instruction set

D3 State register

System
byte

User
flags

o

0
216 -1

1/0 address

TASK_SIZE
- space

232 1

Instruction set
Virtual address

space

IV Semana de la Informatica 2018 = 18

Interactive map of the Linux kernel

Linux kernel map -
uman

functions a
layers lmﬂsystem _?wrocesslng mmemory " storage Mretworkmg interface

system interfaces memory access files & directories sockets access HI char devices
Inupann e ies access
user space ot T

interfaces e

s

virtual

memory disk controllers

ArTeCS
http://www.makelinux.net/kernel_map/

IV Semana de la Informatica 2018 = 19

ot

Main challenges

A beast of a different nature

m Development process is labor-intensive
B Testing new features or bugfixes requires

(Re)Build the kernel (it may take a while!)
Install the new kernel
Reboot the machine

m No memory protection (no SIGSEGV)
m User-space like debugging tools are not available
m Documentation becomes outdated quickly

B Developers must really understand the kernel code

m No standard C library*

' = Limited size of the kernel stack

IV Semana de la Informatica 2018 = 20

Obtaining kernel sources

m Vanilla: (The Linux Kernel Archives) www.kernel.org (tarball
or git repository)

B git://git.kernel.org/pub/scm/linux/kernel/git/stable/
linux-stable.git
B https://git.kernel.org

m GNU/Linux distributions typically use Linux with patches
m Example Debian:
B Package installation with apt-get o apt source

B Source package of linux-image-*
B Jinux-source .deb package (install tarball at /usr/src/)

B More information at Debian Linux Kernel Handbook

IV Semana de la Informatica 2018 - 21

git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git
https://git.kernel.org
https://www.debian.org/releases/stable/amd64/ch08s06.html.en
http://kernel-handbook.alioth.debian.org/ch-source.html

Working with the Linux kernel

Nive.
W,
&

i

| Obtain the sources (extract tarball if necessary)

12
No i ? Yes

| Apply patches (if necessary) BZ: :: \t/)vc;?l:':i

12
| Configure the kernel Reboot into We are

¥ stable kernel done :-)

| Make changes to the source code
12

Build the kernel (make ,make-kpkg) |

Compilation
errors?

22

Install kernel and reboot machinel
IV Semana de la Informatica 2018

Linux kernel modules

What is a kernel module?

m A “code fragment” that can be loaded/unloaded into/from
the OS kernel's address space on demand

® Written in “C"
B Bundled as a .ko file (object file)

B Compilation driven by a Makefile

B insmod, rmmod

m lts functions are executed in kernel mode

Limitation

m Not everything can be implemented as a kernel module

B System calls
B Scheduling algorithms

||
IV Semana de la Informatica 2018 = 23

KGDB

m Requires 2 machines connected via serial port

B Development host: To build the kernel and invoke gdb
B Target system: Runs the kernel with KGDB support

Debug machine Target device

Kernel Linux kernel
Mode
KGDB Core

r

KGDB 10

r

serial cable
Serial Driver —— —— Serial Driver

ArTeCS

Source: https://blog.trendmicro.com

f :' IV Semana de la Informatica 2018 = 24

KDB

m KDB: in-kernel debug shell (serial port/text console)
® No need to use an external debugging host
m KDB is not a source-level debugger

® Programmer needs to deal with assembly code
® You can use it in conjunction with gdb and external symbol file

terminal

$ echo g >/proc/sysrq-trigger
SysRq : DEBUG

Entering kdb (current=0xdfdff040, pid 71) due to Keyboard Entry
kdb> bp sys_sync+4
Instruction(i) BP #0 at 0xc00c9f00 (sys_sync+0x4)

is enabled addr at 00000000c00c9f00, hardtype=0 installed=0

kdb> go
$ sync

Entering kdb (current=0xdfdaa360, pid 72) due to Breakpoint @ 0xc00c9f00

kdb> bt

Stack traceback for pid 72

0xdfdaa360 72 71 1 0 R 0xdfdaab60 *sync

[<c0028cb4>] (unwind_backtrace+0x0/0xe4) from [<c0026d50>] (show_stack+0x10/0x14)
[<c0026d50>] (show_stack+0x10/0x14) from [<c0079e78>] (kdb_show_stack+0x58/0x80)
[<c0079e78>] (kdb_show_stack+0x58/0x80) from [<c0079f1c>] (kdb_btl.clone.0+0x7c/0xcc)
[<c0079f1c>] (kdb_btl.clone.0+0x7c/Oxcc) from [<c007a240>] (kdb_bt+0x2d4/0x338)

IV Semana de la Informatica 2018

SystemTap

m SystemTap: Tool for dynamic instrumentation of the kerne

B Scripting language

example.stp

probe kernel.function("do_fork"){
printf("do_fork() was invoked by PID=}d\n",pid());
}

terminal
$ sudo stap example.stp
do_fork() was invoked by PID=4811

do_fork() was invoked by PID=4820
do_fork() was invoked by PID=4811

IV Semana de la Informatica 2018 = 26

Linux kernel debugging

m Many options available:

KGDB

KDB

GDB + /proc/kcore

Ftrace

SystemTap

ICE / JTAG (USB or ethernet)
printk() + dmesg
kdump/kexec

m The challenge is knowing what to use when...

m Many tools have a steep learning curve

ArTeCS

ot

IV Semana de la Informatica 2018 = 27

Outline

Kernel Control Paths and Concurrency

ArTeCS

ot

IV Semana de la Informatica 2018 -= 28

Kernel Control Paths

m Linux kernel is like a server that answers requests
® Kernel functions are executed in response to events

System calls
An exception occurs (e.g., illegal instruction)
An interrupt is raised by an /O device

m Kernel control path: sequence of instructions executed in
kernel mode

B |ighter than a process (less context)
B |t does not always work on behalf of a process

ArTeCS

IV Semana de la Informatica 2018 = 29

Tt

Execution Contexts

m At a certain time instant t each CPU can be running:

B A process's code at user space (Process context in user mode)
Kernel code from a system call or exception handler (Process
context in kernel mode)

A kernel thread’s code (Process context in kernel mode)
Interrupt handling code (Interrupt context)

| user User Mode

|
|
l
| -7 [V
kernel | kernel [kerneq Kernel Mode

D e I

IV Semana de la Informatica 2018 = 30

Causes of Concurrency

m Causes of interleaved/parallel execution of kernel code paths
Interrupts

B An interrupt can occur asynchronously at almost any time,
inter- rupting the currently executing code

Bottom-half processing
Kernel preemption

B Because the kernel is preemptive, one kernel code path can
preempt another

A Sleeping and synchronization with user-space

B A task in the kernel can sleep and thus invoke the scheduler,
resulting in the running of a new process.

H Symmetrical multiprocessing

B Two or more processors can execute kernel code at exactly the
same time

IV Semana de la Informatica 2018 - 31

Outline

A Common Kernel abstractions

ArTeCS

f: IV Semana de la Informatica 2018 = 32

Interactive map of the Linux kernel

Linux kernel map -
uman

functions a
layers lmﬂsystem _?wrocesslng mmemory " storage Mretworkmg interface

system interfaces memory access files & directories sockets access HI char devices
Inupann e ies access
user space ot T

interfaces e

s

virtual

memory disk controllers

ArTeCS
http://www.makelinux.net/kernel_map/

IV Semana de la Informatica 2018 = 33

ot

Common Kernel abstractions

Common abstractions

m System calls

m Pseudo file systems: /proc, /sys
m Kernel data structures

m Dynamic memory allocation

® kmalloc(), vmalloc(), kfree(), vfree()

Bottom-half methods (deffering work)
Kernel timers
Kernel threads

Kernel synchronization methods

IV Semana de la Informatica 2018 - 34

Pseudo file systems

m Interaction between user programs and the kernel through files
® We may read/modify kernel “variables" via shell commands

B echo 1 > /proc/sys/net/ipv4/ip_forward
B cat /proc/cpuinfo

/proc

m Programmer must provide an implementation of the various file op-
erations (syscalls) supported: read(), write(), ..

/sys

m Folders in each sysfs directory correspond to objects (kobjects)

m Files in sysfs represent attributes of an object

B write file — change attribute value
B read file — retrieve attribute value

IV Semana de la Informatica 2018 = 35

Generic data structures

m The Linux kernel implements various generic data structures

Doubly linked lists
B Queues
B Maps
[
[

Binary trees

m Avoid dynamic memory allocation when possible

list_head list_head list_head

ArTeCS

IV Semana de la Informatica 2018 = 36

ot

Bottom-half methods

Motivation

m Sometimes, a certain kind of work cannot be done immedi-
ately

® Too much computation associated with interrupt processing
B TCP/IP processing upon recieving network packet

B |nability to invoke blocking functions from interrupt context
and other code regions

Solution: defer work for later

m Sofirgs — raise_sofirq()
m Tasklets — tasklet_schedule()

' m Work Queues — schedule_work ()

IV Semana de la Informatica 2018 - 37

Mechanisms to defer work

m Deferred work (task) is modeled as a structure with an associ-
ated function

m The task is first scheduled and will be executed later (with
interrupts enabled)

Advantages/Disadvantages Work descriptor

High Performance . .
softirq_action Interrupt

Softirgs Requires changes to the kernel . . 1
i <linux/interrupt.h> Context
Concurrency issues

Softirgs from kernel modules
tasklet_struct Interrupt

Tasklets Concurrency easy to handle . . 1
<linux/interrupt.h> Context

Limited scalability
Run in process context
Workqueues Easy to use
Lower performance

work_struct Process

<linux/workqueue.h> Context

LWhen system is loaded with sofirq processing, the ksoftirqd kernel threads executes softirgs.

IV Semana de la Informatica 2018 - 38

Outline

A case study: PMCTrack tool

ArTeCS

G@ :l IV Semana de la Informatica 2018 = 39

Performance monitoring counters

B Most modern complex computing systems are equipped with
hardware Performance Monitoring Counters (PMCs)

m High-level performance metrics collected via PMCs provide
valuable hints to programmers and computer architects

® |PC, Last-Level Cache (LLC) miss rate, ..

14 30
25
20

5

0

S
o
@
LLC misses per 1K instr

5
0.2 0

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Samples Samples

IV Semana de la Informatica 2018 = 40

Performance monitoring counters

PMCs: Registers accessible via special ISA instructions

m Two types:

Fixed-function PMC
General-purpose (configurable) PMC

m Each PMC has a control register associated to it

B Enable, Event Type, Subevent (UMASK), Interrupt-related be-
havior, ...

m Direct access to PMCs is typically restricted to code running
at the OS privilege level

B Kernel-level tools enable users to access PMCs
B | ow-level access to PMCs is tedious

IV Semana de la Informatica 2018 - 41

PMCs and the OS scheduler

m The OS scheduler can leverage PMCs to perform effective op-
timizations in modern multicore systems (CMPs)

® Qverall Idea:

OS characterizes application behavior online using PMCs
F Perform thread-to-core mappings to optimize a certain metric

Main challenge:

How to use HW counters within the Linux scheduler without polluting
the implementation with platform-specific code

IV Semana de la Informatica 2018 = 42

The PMCTrack performance monitoring tool

PMCTrack
m Project started in 2007

B |t provided access to PMCs from the scheduler code only

m Contributions made by UCM students

2012: Guillermo Martinez, Sergio Sanchez, Sofia Dronda
2015: Jorge Casas, Abel Serrano
2016: Adriin Garcia, Alvaro Sanz

m Today, it is an open-source tool for the Linux kernel (GPL v2)

B Supports both user-space and kernel-level monitoring
B QOther monitoring information beyond HW PMC events:

d B Energy/Power consumption readings (Intel/ARM)
B | ast-level cache usage (Intel CMT)

IV Semana de la Informatica 2018 = 43

PMCTrack architecture

(End User) (User applications)
g PMCTrack-GUI
3
&
g PMCTrack
> Command-Line Tools
libpmctrack)
_ /proc/pmc/* entries)
g
£ (Linux Core Scheduler)
x
E ¢
- (PMCTrack kernel API)
4 .
‘g § (PMCTrack architecture-independent core)
F £
§ < Monitoring Xeon-Phi ARM AMD Intel
a5 modules Backend) Backend) | Backend J Backend
XN
Hardware Monitoring Facillities)

IV Semana de la Informatica 2018 - 44

Using PMCTrack from user space

Usage modes

Time-Based Sampling (TBS)

® An application’s PMC and virtual counter values are collected
at regular time intervals

Time-Based system-wide monitoring mode
B TBS for each CPU in the system
Event-Based Sampling (EBS)

B An application's PMC and virtual counter values are collected
when a given HW event counter reaches a certain count

A Self-monitoring mode (instrumentation with libpmctrack)

. B Retrieve PMC and virtual counter values for specific code frag-
ments

IV Semana de la Informatica 2018 = 45

The pmctrack command-line tool (TBS)

TBS with pmctrack

$ pmctrack -T 1 -c instr,cycles,llc_misses -V energy_core ./mcf06

[Event-to-counter mappings]

pmcO=instr

pmcl=cycles

pmc3=1lc_misses

virtO=energy_core

[Event counts]

nsample pid pmcO pmcl pmc3 virt0

7778 1989870049 3521428186 30089533 7869018
7778 1234494786 3587014459 25088834 7564880

1218749172 3586903894 24850423 7397277
1554203899 3271717037 19625102 8395812
1651034822 3025477428 10236088 8309570
2622803674 3586074561 18181359 6571350
2144785721 3591965814 19974329 6329467
1362794547 3591687395 22918211 5958740
1449585203 3591073740 22429638 6103515
1334665386 3590503009 22791454 5949584
1343737278 3591222149 22656358 5937927
1354545497 3589517197 22481647 6004760
1384381286 3592969591 22269118 5994689
1322495773 3592560690 22350731 6013854

IV Semana de la Informatica 2018 =

The pmctrack command-line tool (TBS)

TBS with pmctrack + pmc-metric

$ pmctrack -T 1 -c instr,cycles,llc_misses -V energy_core ./mcf06 \
| pmc-metric -v -m 'IPC=pmcO/pmcl' -m 'LLCMPKI=(1000*pmc3/pmc0)' -m 'EPI=(1000*virt0)/pmcO’
[Event-to-counter mappings]
pmcO=instr
pmcl=cycles
pmc3=1lc_misses
virtO=energy_core

nsample pid IPC LLCMPKI EPI
1 7843 561232 .257263 006190

7843 342564 .487803 206797

7843 336885 . 794879 299878

7843 467948 .102071 444737

7843 550340 .039147 127041

726642 .018734 470913
602763 .199328 960916
379303 .821609 276329
405407 .388447 163115
369597 .169366 385655
376348 . 728609 448713
377036 .614485 339088
384078 .130389 323180
370209 .777249 443311
376361 .289599 430110
371755 .375152 486414
379319 .409991 542519

0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.

[N N N N N N SN O SR R S

IV Semana de la Informatica 2018 = 47

PMCTrack-GUI: a Python graphical frontend

ece PMGTrack-GUI 1.0.2 - Counters & metis configuration 8, EMCTrack;GU)| ¥1.0.2.- Monftoring applistion estar06
Solect graph to show
Vide virtua counters Add oxperiment _||_Remove oxporiment

it counersavtaoie PID: 6173 B
vino energy_core § B
Gt o Experiment: Experiment 1 B
vir2 energy.dram B
e Metric: LLC_miss_rate B

Open up graph in a new window Show grapn

[)

Hardware countrs configuration
Epmed Fixed-function counter instr retired fixed Showing graph with PID 6173, expariment 1 and matric PG
pmel Fixed-function counter unhalted core oycles fixed

Pmc2 Fixod-function counter unhalted rof cycies fxed

Epme3 General purpose counter llc_misses Change event
pmcd General purpose counter No event assigned Assign event
PmCS General purpose counter No event assigned Assign event
PmCS General purpose counter No event assigned Assign event.

pmc7 General purpose counter No event assigned Assign event.

Motrios coniurston

P pmcdlpmet Ramove metic
LG miss rate (pme31000/pmeo Fomove metrc
9 Eneray_er.instruction. (t1+1000)prcd Romove metric ek
Optons
Name: Add motric
Show partial graph ‘Take graph screenshot
e e Hide controls Stop application

IV Semana de la Informatica 2018 - 48

PMCTrack open-source project

http://pmctrack.dacya.ucm.es

https://github.com/jcsaezal/pmctrack

Support for MIPS Architecture
Energy/Power readings with Odroid Smart Power 2

IV Semana de la Informatica 2018 = 49

https://pmctrack.dacya.ucm.es
https://github.com/jcsaezal/pmctrack

Conclusions

m The Linux kernel is becoming increasingly complex

® The documentation becomes outdated quickly
B Developers must be capable of understanding the kernel code

m Basic knowledge of main kernel abstractions is required
B Pseudo FSs, system calls, kernel timers, BHs, ...
m Linux kernel modules make it easier to get started
m If you're interested, enroll in “Linux and Android Internals”

B Arquitectura Interna de Linux y Android

IV Semana de la Informatica 2018 = 50

2]
c
2
pres)
(2]
Q
=
C

ArTeCS

- 51

2018

IV Semana de la Informética

i

¥

(»

	Introduction
	Main Features
	Kernel Control Paths and Concurrency
	Common Kernel abstractions
	A case study: PMCTrack tool

